
Package: BT (via r-universe)
October 29, 2024

Title (Adaptive) Boosting Trees Algorithm

Version 0.4

Date 2023-08-19

Author Gireg Willame [aut, cre, cph]

Maintainer Gireg Willame <gireg.willame@gmail.com>

Depends R (>= 4.0)

Imports rpart, stats, statmod, parallel

Suggests rmarkdown, knitr, testthat (>= 3.0.0)

Description Performs (Adaptive) Boosting Trees for Poisson distributed
response variables, using log-link function. The code approach
is similar to the one used in 'gbm'/'gbm3'. Moreover, each tree
in the expansion is built thanks to the 'rpart' package. This
package is based on following books and articles Denuit, M.,
Hainaut, D., Trufin, J. (2019) <doi:10.1007/978-3-030-25820-7>
Denuit, M., Hainaut, D., Trufin, J. (2019)
<doi:10.1007/978-3-030-57556-4> Denuit, M., Hainaut, D.,
Trufin, J. (2019) <doi:10.1007/978-3-030-25827-6> Denuit, M.,
Hainaut, D., Trufin, J. (2022)
<doi:10.1080/03461238.2022.2037016> Denuit, M., Huyghe, J.,
Trufin, J. (2022)
<https://dial.uclouvain.be/pr/boreal/fr/object/boreal%3A244325/datastream/
PDF_01/view>
Denuit, M., Trufin, J., Verdebout, T. (2022)
<https://dial.uclouvain.be/pr/boreal/fr/object/boreal%3A268577>.

URL https://github.com/GiregWillame/BT/

BugReports https://github.com/GiregWillame/BT/issues/

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.2.3

Config/testthat/edition 3

VignetteBuilder knitr

1

https://doi.org/10.1007/978-3-030-25820-7
https://doi.org/10.1007/978-3-030-57556-4
https://doi.org/10.1007/978-3-030-25827-6
https://doi.org/10.1080/03461238.2022.2037016
https://dial.uclouvain.be/pr/boreal/fr/object/boreal%3A244325/datastream/PDF_01/view
https://dial.uclouvain.be/pr/boreal/fr/object/boreal%3A244325/datastream/PDF_01/view
https://dial.uclouvain.be/pr/boreal/fr/object/boreal%3A268577
https://github.com/GiregWillame/BT/
https://github.com/GiregWillame/BT/issues/


2 BT

LazyData true

Repository https://giregwillame.r-universe.dev

RemoteUrl https://github.com/giregwillame/bt

RemoteRef HEAD

RemoteSha 1d1db67a96777e46e32dc8e234da47b175557c02

Contents
BT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
BTCVFit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
BTFit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
BT_call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
BT_devTweedie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
BT_more . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
BT_perf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
BT_Simulated_Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
predict.BTFit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
print.BTFit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
summary.BTFit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Index 22

BT (Adaptive) Boosting Trees (ABT/BT) Algorithm.

Description

Performs the (Adaptive) Boosting Trees algorithm. This code prepares the inputs and calls the
function BT_call. Each tree in the process is built thanks to the rpart function. In case of
cross-validation, this function prepares the folds and performs multiple calls to the fitting function
BT_call.

Usage

BT(
formula = formula(data),
data = list(),
tweedie.power = 1,
ABT = TRUE,
n.iter = 100,
train.fraction = 1,
interaction.depth = 4,
shrinkage = 1,
bag.fraction = 1,
colsample.bytree = NULL,
keep.data = TRUE,



BT 3

is.verbose = FALSE,
cv.folds = 1,
folds.id = NULL,
n.cores = 1,
tree.control = rpart.control(xval = 0, maxdepth = (if (!is.null(interaction.depth)) {

interaction.depth
} else {

10
}), cp = -Inf, minsplit = 2),
weights = NULL,
seed = NULL,
...

)

Arguments

formula a symbolic description of the model to be fit. Note that the offset isn’t supported
in this algorithm. Instead, everything is performed with a log-link function and
a direct relationship exist between response, offset and weights.

data an optional data frame containing the variables in the model. By default the vari-
ables are taken from environment(formula), typically the environment from
which BT is called. If keep.data=TRUE in the initial call to BT then BT stores a
copy with the object (up to the variables used).

tweedie.power Experimental parameter currently not used - Set to 1 referring to Poisson distri-
bution.

ABT a boolean parameter. If ABT=TRUE an adaptive boosting tree algorithm is built
whereas if ABT=FALSE an usual boosting tree algorithm is run. By default, it is
set to TRUE.

n.iter the total number of iterations to fit. This is equivalent to the number of trees
and the number of basis functions in the additive expansion. Please note that the
initialization is not taken into account in the n.iter. More explicitly, a weighted
average initializes the algorithm and then n.iter trees are built. Moreover, note
that the bag.fraction, colsample.bytree, ... are not used for this initializing
phase. By default, it is set to 100.

train.fraction the first train.fraction * nrows(data) observations are used to fit the BT and
the remainder are used for computing out-of-sample estimates (also known as
validation error) of the loss function. By default, it is set to 1 meaning no out-
of-sample estimates.

interaction.depth

the maximum depth of variable interactions: 1 builds an additive model, 2 builds
a model with up to two-way interactions, etc. This parameter can also be inter-
preted as the maximum number of non-terminal nodes. By default, it is set to 4.
Please note that if this parameter is NULL, all the trees in the expansion are built
based on the tree.control parameter only, independently of the ABT value.
This option is devoted to advanced users only and allows them to benefit from
the full flexibility of the implemented algorithm.



4 BT

shrinkage a shrinkage parameter (in the interval (0,1]) applied to each tree in the expansion.
Also known as the learning rate or step-size reduction. By default, it is set to 1.

bag.fraction the fraction of independent training observations randomly selected to propose
the next tree in the expansion. This introduces randomness into the model fit. If
bag.fraction<1 then running the same model twice will result in similar but
different fits. Please note that if this parameter is used the BTErrors$training.error
corresponds to the normalized in-bag error and the out-of-bag improvements are
computed and stored in BTErrors$oob.improvement. See BTFit for more de-
tails. By default, it is set to 1.

colsample.bytree

each tree will be trained on a random subset of colsample.bytree number of
features. Each tree will consider a new random subset of features from the
formula, adding variability to the algorithm and reducing computation time.
colsample.bytree will be bounded between 1 and the number of features con-
sidered in the formula. By default, it is set to NULL meaning no effect.

keep.data a boolean variable indicating whether to keep the data frames. This is particu-
larly useful if one wants to keep track of the initial data frames and is further
used for predicting in case any data frame is specified. Note that in case of
cross-validation, if keep.data=TRUE the initial data frames are saved whereas
the cross-validation samples are not. By default, it is set to FALSE.

is.verbose if is.verbose=TRUE, the BT will print out the algorithm progress. By default, it
is set to FALSE.

cv.folds a positive integer representing the number of cross-validation folds to perform.
If cv.folds>1 then BT, in addition to the usual fit, will perform a cross-validation
and calculate an estimate of generalization error returned in BTErrors$cv.error.
By default, it is set to 1 meaning no cross-validation.

folds.id an optional vector of values identifying what fold each observation is in. If
supplied, this parameter prevails over cv.folds. By default, folds.id = NULL
meaning that no folds are defined.

n.cores the number of cores to use for parallelization. This parameter is used during
the cross-validation. This parameter is bounded between 1 and the maximum
number of available cores. By default, it is set to 1 leading to a sequential
approach.

tree.control for advanced user only. It allows to define additional tree parameters that will
be used at each iteration. See rpart.control for more information.

weights optional vector of weights used in the fitting process. These weights must be
positive but do not need to be normalized. By default, it is set to NULL which
corresponds to an uniform weight of 1 for each observation.

seed optional number used as seed. Please note that if cv.folds>1, the parLapply
function is called. Therefore, the seed (if defined) used inside each fold will be
a multiple of the seed parameter.

... not currently used.

Details

The NA values are currently dropped using na.omit.



BT 5

Value

a BTFit object.

Author(s)

Gireg Willame <gireg.willame@gmail.com>

This package is inspired by the gbm3 package. For more details, see https://github.com/gbm-developers/
gbm3/.

References

M. Denuit, D. Hainaut and J. Trufin (2019). Effective Statistical Learning Methods for Actuaries
|: GLMs and Extensions, Springer Actuarial.

M. Denuit, D. Hainaut and J. Trufin (2019). Effective Statistical Learning Methods for Actuaries
||: Tree-Based Methods and Extensions, Springer Actuarial.

M. Denuit, D. Hainaut and J. Trufin (2019). Effective Statistical Learning Methods for Actuaries
|||: Neural Networks and Extensions, Springer Actuarial.

M. Denuit, D. Hainaut and J. Trufin (2022). Response versus gradient boosting trees, GLMs
and neural networks under Tweedie loss and log-link. Accepted for publication in Scandinavian
Actuarial Journal.

M. Denuit, J. Huyghe and J. Trufin (2022). Boosting cost-complexity pruned trees on Tweedie
responses: The ABT machine for insurance ratemaking. Paper submitted for publication.

M. Denuit, J. Trufin and T. Verdebout (2022). Boosting on the responses with Tweedie loss
functions. Paper submitted for publication.

See Also

BTFit, BTCVFit, BT_call, BT_perf, predict.BTFit, summary.BTFit, print.BTFit, .BT_cv_errors.

Examples

## Load dataset.
dataset <- BT::BT_Simulated_Data

## Fit a Boosting Tree model.
BT_algo <- BT(formula = Y_normalized ~ Age + Sport + Split + Gender, # formula

data = dataset, # data
ABT = FALSE, # Classical Boosting Tree
n.iter = 200,
train.fraction = 0.8,
interaction.depth = 3,
shrinkage = 0.01,
bag.fraction = 0.5,
colsample.bytree = 2, # 2 explanatory variable used at each iteration.
keep.data = FALSE, # Do not keep a data copy.
is.verbose = FALSE, # Do not print progress.
cv.folds = 3, # 3-cv will be performed.
folds.id = NULL ,

https://github.com/gbm-developers/gbm3/
https://github.com/gbm-developers/gbm3/


6 BTCVFit

n.cores = 1,
weights = ExpoR, # <=> Poisson model on response Y with ExpoR in offset.
seed = NULL)

## Determine the model performance and plot results.
best_iter_val <- BT_perf(BT_algo, method='validation')
best_iter_oob <- BT_perf(BT_algo, method='OOB', oobag.curve = TRUE)
best_iter_cv <- BT_perf(BT_algo, method ='cv', oobag.curve = TRUE)

best_iter <- best_iter_val

## Variable influence and plot results.
# Based on the first iteration.
variable_influence1 <- summary(BT_algo, n.iter = 1)
# Using all iterations up to best_iter.
variable_influence_best_iter <- summary(BT_algo, n.iter = best_iter)

## Print results : call, best_iters and summarized relative influence.
print(BT_algo)

## Model predictions.
# Predict on the link scale, using only the best_iter tree.
pred_single_iter <- predict(BT_algo, newdata = dataset,

n.iter = best_iter, type = 'link', single.iter = TRUE)
# Predict on the response scale, using the first best_iter.
pred_best_iter <- predict(BT_algo, newdata = dataset,

n.iter = best_iter, type = 'response')

BTCVFit BTCVFit

Description

These are objects representing CV fitted boosting trees.

Details

CV (Adaptive) Boosting Tree Model Object.

Value

a list of BTFit objects with each element corresponding to a specific BT fit on a particular fold

Structure

The following components must be included in a legitimate BTCVFit object.



BTFit 7

Author(s)

Gireg Willame <gireg.willame@gmail.com>

This package is inspired by the gbm3 package. For more details, see https://github.com/gbm-developers/
gbm3/.

References

M. Denuit, D. Hainaut and J. Trufin (2019). Effective Statistical Learning Methods for Actuaries
|: GLMs and Extensions, Springer Actuarial.

M. Denuit, D. Hainaut and J. Trufin (2019). Effective Statistical Learning Methods for Actuaries
||: Tree-Based Methods and Extensions, Springer Actuarial.

M. Denuit, D. Hainaut and J. Trufin (2019). Effective Statistical Learning Methods for Actuaries
|||: Neural Networks and Extensions, Springer Actuarial.

M. Denuit, D. Hainaut and J. Trufin (2022). Response versus gradient boosting trees, GLMs
and neural networks under Tweedie loss and log-link. Accepted for publication in Scandinavian
Actuarial Journal.

M. Denuit, J. Huyghe and J. Trufin (2022). Boosting cost-complexity pruned trees on Tweedie
responses: The ABT machine for insurance ratemaking. Paper submitted for publication.

M. Denuit, J. Trufin and T. Verdebout (2022). Boosting on the responses with Tweedie loss
functions. Paper submitted for publication.

See Also

BT.

BTFit BTFit

Description

These are objects representing fitted boosting trees.

Details

Boosting Tree Model Object.

Value

BTInit an object of class BTInit containing the initial fitted value initFit, the initial
training.error and the initial validation.error if any.

BTErrors an object of class BTErrors containing the vectors of errors for each iteration
performed (excl. the initialization). More precisely, it contains the training.error,
validation.error if train.fraction<1 and the oob.improvement if bag.fraction
< 1. Moreover, if a cross-validation approach was performed, a vector of cross-
validation errors cv.error as a function of boosting iteration is also stored in
this object.

https://github.com/gbm-developers/gbm3/
https://github.com/gbm-developers/gbm3/


8 BTFit

BTIndivFits an object of class BTIndivFits containing the list of each individual tree fitted
at each boosting iteration.

distribution the Tweedie power (and so the distribution) that has been used to perform the
algorithm. It will currently always output 1.

var.names a vector containing the names of the explanatory variables.

response the name of the target/response variable.

w a vector containing the weights used.

seed the used seed, if any.

BTData if keep.data=TRUE, an object of class BTData containing the training.set
and validation.set (can be NULL if not used). These data frames are reduced
to the used variables, that are the response and explanatory variables. Note that
in case of cross-validation, even if keep.data=TRUE the folds will not be kept.
In fact, only the data frames related to the original fit (i.e. on the whole training
set) will be saved.

BTParams an object of class BTParams containing all the (Adaptive) boosting tree pa-
rameters. More precisely, it contains the ABT, train.fraction, shrinkage,
interaction.depth, bag.fraction, n.iter, colsample.bytree and tree.control
parameter values.

keep.data the keep.data parameter value.

is.verbose the is.verbose parameter value.

fitted.values the training set fitted values on the score scale using all the n.iter (and initial-
ization) iterations.

cv.folds the number of cross-validation folds. Set to 1 if no cross-validation performed.

call the original call to the BT algorithm.

Terms the model.frame terms argument.

folds a vector of values identifying to which fold each observation is in. This argument
is not present if there is no cross-validation. On the other hand, it corresponds
to folds.id if it was initially defined by the user.

cv.fitted a vector containing the cross-validation fitted values, if a cross-validation was
performed. More precisely, for a given observation, the prediction will be fur-
nished by the cv-model for which this specific observation was out-of-fold. See
predict.BTCVFit for more details.

Structure

The following components must be included in a legitimate BTFit object.

Author(s)

Gireg Willame <gireg.willame@gmail.com>

This package is inspired by the gbm3 package. For more details, see https://github.com/gbm-developers/
gbm3/.

https://github.com/gbm-developers/gbm3/
https://github.com/gbm-developers/gbm3/


BT_call 9

References

M. Denuit, D. Hainaut and J. Trufin (2019). Effective Statistical Learning Methods for Actuaries
|: GLMs and Extensions, Springer Actuarial.

M. Denuit, D. Hainaut and J. Trufin (2019). Effective Statistical Learning Methods for Actuaries
||: Tree-Based Methods and Extensions, Springer Actuarial.

M. Denuit, D. Hainaut and J. Trufin (2019). Effective Statistical Learning Methods for Actuaries
|||: Neural Networks and Extensions, Springer Actuarial.

M. Denuit, D. Hainaut and J. Trufin (2022). Response versus gradient boosting trees, GLMs
and neural networks under Tweedie loss and log-link. Accepted for publication in Scandinavian
Actuarial Journal.

M. Denuit, J. Huyghe and J. Trufin (2022). Boosting cost-complexity pruned trees on Tweedie
responses: The ABT machine for insurance ratemaking. Paper submitted for publication.

M. Denuit, J. Trufin and T. Verdebout (2022). Boosting on the responses with Tweedie loss
functions. Paper submitted for publication.

See Also

BT.

BT_call (Adaptive) Boosting Trees (ABT/BT) fit.

Description

Fit a (Adaptive) Boosting Trees algorithm. This is for "power" users who have a large number of
variables and wish to avoid calling model.frame which can be slow in this instance. This function is
in particular called by BT. It is mainly split in two parts, the first one considers the initialization (see
BT_callInit) whereas the second performs all the boosting iterations (see BT_callBoosting). By
default, this function does not perform input checks (those are all done in BT) and all the parameters
should be given in the right format. We therefore suppose that the user is aware of all the choices
made.

Usage

BT_call(
training.set,
validation.set,
tweedie.power,
respVar,
w,
explVar,
ABT,
tree.control,
train.fraction,
interaction.depth,



10 BT_call

bag.fraction,
shrinkage,
n.iter,
colsample.bytree,
keep.data,
is.verbose

)

BT_callInit(training.set, validation.set, tweedie.power, respVar, w)

BT_callBoosting(
training.set,
validation.set,
tweedie.power,
ABT,
tree.control,
interaction.depth,
bag.fraction,
shrinkage,
n.iter,
colsample.bytree,
train.fraction,
keep.data,
is.verbose,
respVar,
w,
explVar

)

Arguments

training.set a data frame containing all the related variables on which one wants to fit the
algorithm.

validation.set a held-out data frame containing all the related variables on which one wants to
assess the algorithm performance. This can be NULL.

tweedie.power Experimental parameter currently not used - Set to 1 referring to Poisson distri-
bution.

respVar the name of the target/response variable.

w a vector of weights.

explVar a vector containing the name of explanatory variables.

ABT a boolean parameter. If ABT=TRUE an adaptive boosting tree algorithm is built
whereas if ABT=FALSE an usual boosting tree algorithm is run.

tree.control allows to define additional tree parameters that will be used at each iteration.
See rpart.control for more information.

train.fraction the first train.fraction * nrows(data) observations are used to fit the BT and
the remainder are used for computing out-of-sample estimates (also known as



BT_call 11

validation error) of the loss function. It is mainly used to report the value in the
BTFit object.

interaction.depth

the maximum depth of variable interactions: 1 builds an additive model, 2 builds
a model with up to two-way interactions, etc. This parameter can also be inter-
preted as the maximum number of non-terminal nodes. By default, it is set to 4.
Please note that if this parameter is NULL, all the trees in the expansion are built
based on the tree.control parameter only. This option is devoted to advanced
users only and allows them to benefit from the full flexibility of the implemented
algorithm.

bag.fraction the fraction of independent training observations randomly selected to propose
the next tree in the expansion. This introduces randomness into the model fit. If
bag.fraction<1 then running the same model twice will result in similar but
different fits. BT uses the R random number generator, so set.seed ensures the
same model can be reconstructed. Please note that if this parameter is used the
BTErrors$training.error corresponds to the normalized in-bag error.

shrinkage a shrinkage parameter applied to each tree in the expansion. Also known as the
learning rate or step-size reduction.

n.iter the total number of iterations to fit. This is equivalent to the number of trees
and the number of basis functions in the additive expansion. Please note that the
initialization is not taken into account in the n.iter. More explicitly, a weighted
average initializes the algorithm and then n.iter trees are built. Moreover, note
that the bag.fraction, colsample.bytree, ... are not used for this initializing
phase.

colsample.bytree

each tree will be trained on a random subset of colsample.bytree number of
features. Each tree will consider a new random subset of features from the
formula, adding variability to the algorithm and reducing computation time.
colsample.bytree will be bounded between 1 and the number of features con-
sidered.

keep.data a boolean variable indicating whether to keep the data frames. This is particu-
larly useful if one wants to keep track of the initial data frames and is further
used for predicting in case any data frame is specified. Note that in case of
cross-validation, if keep.data=TRUE the initial data frames are saved whereas
the cross-validation samples are not.

is.verbose if is.verbose=TRUE, the BT will print out the algorithm progress.

Value

a BTFit object.

Author(s)

Gireg Willame <gireg.willame@gmail.com>

This package is inspired by the gbm3 package. For more details, see https://github.com/gbm-developers/
gbm3/.

https://github.com/gbm-developers/gbm3/
https://github.com/gbm-developers/gbm3/


12 BT_devTweedie

References

M. Denuit, D. Hainaut and J. Trufin (2019). Effective Statistical Learning Methods for Actuaries
|: GLMs and Extensions, Springer Actuarial.

M. Denuit, D. Hainaut and J. Trufin (2019). Effective Statistical Learning Methods for Actuaries
||: Tree-Based Methods and Extensions, Springer Actuarial.

M. Denuit, D. Hainaut and J. Trufin (2019). Effective Statistical Learning Methods for Actuaries
|||: Neural Networks and Extensions, Springer Actuarial.

M. Denuit, D. Hainaut and J. Trufin (2022). Response versus gradient boosting trees, GLMs
and neural networks under Tweedie loss and log-link. Accepted for publication in Scandinavian
Actuarial Journal.

M. Denuit, J. Huyghe and J. Trufin (2022). Boosting cost-complexity pruned trees on Tweedie
responses: The ABT machine for insurance ratemaking. Paper submitted for publication.

M. Denuit, J. Trufin and T. Verdebout (2022). Boosting on the responses with Tweedie loss
functions. Paper submitted for publication.

See Also

BTFit, BTCVFit, BT_perf, predict.BTFit, summary.BTFit, print.BTFit, .BT_cv_errors.

BT_devTweedie Deviance function for the Tweedie family.

Description

Compute the deviance for the Tweedie family case.

Usage

BT_devTweedie(y, mu, tweedieVal, w = NULL)

Arguments

y a vector containing the observed values.
mu a vector containing the fitted values.
tweedieVal a numeric representing the Tweedie Power. It has to be a positive number outside

of the interval ]0,1[.
w an optional vector of weights.

Details

This function computes the Tweedie related deviance. The latter is defined as:

d(y,mu,w) = w(y −mu)2, iftweedieV al = 0;

d(y,mu,w) = 2w(ylog(y/mu) +mu− y), iftweedieV al = 1;

d(y,mu,w) = 2w(log(mu/y) + y/mu− 1), iftweedieV al = 2;

d(y,mu,w) = 2w(max(y, 0)(2−p)/((1−p)(2−p))−ymu(1−p)/(1−p)+mu(2−p)/(2−p)), else.



BT_more 13

Value

A vector of individual deviance contribution.

Author(s)

Gireg Willame <gireg.willame@gmail.com>

This package is inspired by the gbm3 package. For more details, see https://github.com/gbm-developers/
gbm3/.

References

M. Denuit, D. Hainaut and J. Trufin (2019). Effective Statistical Learning Methods for Actuaries
|: GLMs and Extensions, Springer Actuarial.

M. Denuit, D. Hainaut and J. Trufin (2019). Effective Statistical Learning Methods for Actuaries
||: Tree-Based Methods and Extensions, Springer Actuarial.

M. Denuit, D. Hainaut and J. Trufin (2019). Effective Statistical Learning Methods for Actuaries
|||: Neural Networks and Extensions, Springer Actuarial.

M. Denuit, D. Hainaut and J. Trufin (2022). Response versus gradient boosting trees, GLMs
and neural networks under Tweedie loss and log-link. Accepted for publication in Scandinavian
Actuarial Journal.

M. Denuit, J. Huyghe and J. Trufin (2022). Boosting cost-complexity pruned trees on Tweedie
responses: The ABT machine for insurance ratemaking. Paper submitted for publication.

M. Denuit, J. Trufin and T. Verdebout (2022). Boosting on the responses with Tweedie loss
functions. Paper submitted for publication.

See Also

BT, BT_call.

BT_more Perform additional boosting iterations.

Description

Method to perform additional iterations of the Boosting Tree algorithm, starting from an initial
BTFit object. This does not support further cross-validation. Moreover, this approach is only
allowed if keep.data=TRUE in the original call.

Usage

BT_more(BTFit_object, new.n.iter = 100, is.verbose = FALSE, seed = NULL)

https://github.com/gbm-developers/gbm3/
https://github.com/gbm-developers/gbm3/


14 BT_more

Arguments

BTFit_object a BTFit object.

new.n.iter number of new boosting iterations to perform.

is.verbose a logical specifying whether or not the additional fitting should run "noisely"
with feedback on progress provided to the user.

seed optional seed used to perform the new iterations. By default, no seed is set.

Value

Returns a new BTFit object containing the initial call as well as the new iterations performed.

Author(s)

Gireg Willame <gireg.willame@gmail.com>

This package is inspired by the gbm3 package. For more details, see https://github.com/gbm-developers/
gbm3/.

References

M. Denuit, D. Hainaut and J. Trufin (2019). Effective Statistical Learning Methods for Actuaries
|: GLMs and Extensions, Springer Actuarial.

M. Denuit, D. Hainaut and J. Trufin (2019). Effective Statistical Learning Methods for Actuaries
||: Tree-Based Methods and Extensions, Springer Actuarial.

M. Denuit, D. Hainaut and J. Trufin (2019). Effective Statistical Learning Methods for Actuaries
|||: Neural Networks and Extensions, Springer Actuarial.

M. Denuit, D. Hainaut and J. Trufin (2022). Response versus gradient boosting trees, GLMs
and neural networks under Tweedie loss and log-link. Accepted for publication in Scandinavian
Actuarial Journal.

M. Denuit, J. Huyghe and J. Trufin (2022). Boosting cost-complexity pruned trees on Tweedie
responses: The ABT machine for insurance ratemaking. Paper submitted for publication.

M. Denuit, J. Trufin and T. Verdebout (2022). Boosting on the responses with Tweedie loss
functions. Paper submitted for publication.

See Also

BT, BTFit.

https://github.com/gbm-developers/gbm3/
https://github.com/gbm-developers/gbm3/


BT_perf 15

BT_perf Performance assessment.

Description

Function to compute the performances of a fitted boosting tree.

Usage

BT_perf(
BTFit_object,
plot.it = TRUE,
oobag.curve = FALSE,
overlay = TRUE,
method,
main = ""

)

Arguments

BTFit_object a BTFit object resulting from an initial call to BT

plot.it a boolean indicating whether to plot the performance measure. Setting plot.it
= TRUE creates two plots. The first one plots the object$BTErrors$training.error
(in black) as well as the object$BTErrors$validation.error (in red) and/or
the object$BTErrors$cv.error (in green) depending on the method and parametriza-
tion. These values are plotted as a function of the iteration number. The scale of
the error measurement, shown on the left vertical axis, depends on the arguments
used in the initial call to BT and the chosen method.

oobag.curve indicates whether to plot the out-of-bag performance measures in a second plot.
Note that this option makes sense if the bag.fraction was properly defined in
the initial call to BT.

overlay if set to TRUE and oobag.curve=TRUE then a right y-axis is added and the esti-
mated cumulative improvement in the loss function is plotted versus the iteration
number.

method indicates the method used to estimate the optimal number of boosting itera-
tions. Setting method = "OOB" computes the out-of-bag estimate and method
= "validation" uses the validation dataset to compute an out-of-sample esti-
mate. Finally, setting method = "cv" extracts the optimal number of iterations
using cross-validation, if BT was called with cv.folds > 1. If missing, a guess-
ing method is applied.

main optional parameter that allows the user to define specific plot title.

Value

Returns the estimated optimal number of iterations. The method of computation depends on the
method argument.



16 BT_Simulated_Data

Author(s)

Gireg Willame <g.willame@detralytics.eu>

This package is inspired by the gbm3 package. For more details, see https://github.com/gbm-developers/
gbm3/.

References

M. Denuit, D. Hainaut and J. Trufin (2019). Effective Statistical Learning Methods for Actuaries
|: GLMs and Extensions, Springer Actuarial.

M. Denuit, D. Hainaut and J. Trufin (2019). Effective Statistical Learning Methods for Actuaries
||: Tree-Based Methods and Extensions, Springer Actuarial.

M. Denuit, D. Hainaut and J. Trufin (2019). Effective Statistical Learning Methods for Actuaries
|||: Neural Networks and Extensions, Springer Actuarial.

M. Denuit, D. Hainaut and J. Trufin (2022). Response versus gradient boosting trees, GLMs
and neural networks under Tweedie loss and log-link. Accepted for publication in Scandinavian
Actuarial Journal.

M. Denuit, J. Huyghe and J. Trufin (2022). Boosting cost-complexity pruned trees on Tweedie
responses: The ABT machine for insurance ratemaking. Paper submitted for publication.

M. Denuit, J. Trufin and T. Verdebout (2022). Boosting on the responses with Tweedie loss
functions. Paper submitted for publication.

See Also

BT, BT_call.

BT_Simulated_Data Simulated Database.

Description

A simulated database used for examples and vignettes. The variables are related to a motor insur-
ance pricing context.

Usage

BT_Simulated_Data

Format

A simulated data frame with 50,000 rows and 7 columns, containing simulation of different policy-
holders:

Gender Gender, varying between male and female.

Age Age, varying from 18 to 65years old.

https://github.com/gbm-developers/gbm3/
https://github.com/gbm-developers/gbm3/


predict.BTFit 17

Split Noisy variable, not used to simulate the response variable. It allows to assess how the algo-
rithm handle these features.

Sport Car type, varying between yes (sport car) or no.
ExpoR Yearly exposure-to-risk, varying between 0 and 1.
Y Yearly claim number, simulated thanks to Poisson distribution.
Y_normalized Yearly claim frequency, corresponding to the ratio between Y and ExpoR.

predict.BTFit Predict method for BT Model fits.

Description

Predicted values based on a boosting tree model object.

Usage

## S3 method for class 'BTFit'
predict(object, newdata, n.iter, type = "link", single.iter = FALSE, ...)

Arguments

object a BTFit object.
newdata data frame of observations for which to make predictions. If missing or not a

data frame, if keep.data=TRUE in the initial fit then the original training set will
be used.

n.iter number of boosting iterations used for the prediction. This parameter can be a
vector in which case predictions are returned for each iteration specified.

type the scale on which the BT makes the predictions. Can either be "link" or "re-
sponse". Note that, by construction, a log-link function is used during the fit.

single.iter if single.iter=TRUE then predict.BTFit returns the predictions from the sin-
gle tree n.iter.

... not currently used.

Details

predict.BTFit produces a predicted values for each observation in newdata using the first n.iter
boosting iterations. If n.iter is a vector then the result is a matrix with each column corresponding
to the BT predictions with n.iter[1] boosting iterations, n.iter[2] boosting iterations, and so on.

As for the fit, the predictions do not include any offset term. In the Poisson case, please remind that
a weighted approach is initially favored.

Value

Returns a vector of predictions. By default, the predictions are on the score scale. If type =
"response", then BT converts back to the same scale as the outcome. Note that, a log-link is
supposed by construction.



18 print.BTFit

Author(s)

Gireg Willame <gireg.willame@gmail.com>

This package is inspired by the gbm3 package. For more details, see https://github.com/gbm-developers/
gbm3/.

References

M. Denuit, D. Hainaut and J. Trufin (2019). Effective Statistical Learning Methods for Actuaries
|: GLMs and Extensions, Springer Actuarial.

M. Denuit, D. Hainaut and J. Trufin (2019). Effective Statistical Learning Methods for Actuaries
||: Tree-Based Methods and Extensions, Springer Actuarial.

M. Denuit, D. Hainaut and J. Trufin (2019). Effective Statistical Learning Methods for Actuaries
|||: Neural Networks and Extensions, Springer Actuarial.

M. Denuit, D. Hainaut and J. Trufin (2022). Response versus gradient boosting trees, GLMs
and neural networks under Tweedie loss and log-link. Accepted for publication in Scandinavian
Actuarial Journal.

M. Denuit, J. Huyghe and J. Trufin (2022). Boosting cost-complexity pruned trees on Tweedie
responses: The ABT machine for insurance ratemaking. Paper submitted for publication.

M. Denuit, J. Trufin and T. Verdebout (2022). Boosting on the responses with Tweedie loss
functions. Paper submitted for publication.

See Also

BT, BTFit.

print.BTFit Printing function.

Description

Function to print the BT results.

Usage

## S3 method for class 'BTFit'
print(x, ...)

Arguments

x a BTFit object.

... arguments passed to print.default.

Details

Print the different input parameters as well as obtained results (best iteration/performance & relative
influence) given the chosen approach.

https://github.com/gbm-developers/gbm3/
https://github.com/gbm-developers/gbm3/


summary.BTFit 19

Value

No value returned.

Author(s)

Gireg Willame <gireg.willame@gmail.com>

This package is inspired by the gbm3 package. For more details, see https://github.com/gbm-developers/
gbm3/.

References

M. Denuit, D. Hainaut and J. Trufin (2019). Effective Statistical Learning Methods for Actuaries
|: GLMs and Extensions, Springer Actuarial.

M. Denuit, D. Hainaut and J. Trufin (2019). Effective Statistical Learning Methods for Actuaries
||: Tree-Based Methods and Extensions, Springer Actuarial.

M. Denuit, D. Hainaut and J. Trufin (2019). Effective Statistical Learning Methods for Actuaries
|||: Neural Networks and Extensions, Springer Actuarial.

M. Denuit, D. Hainaut and J. Trufin (2022). Response versus gradient boosting trees, GLMs
and neural networks under Tweedie loss and log-link. Accepted for publication in Scandinavian
Actuarial Journal.

M. Denuit, J. Huyghe and J. Trufin (2022). Boosting cost-complexity pruned trees on Tweedie
responses: The ABT machine for insurance ratemaking. Paper submitted for publication.

M. Denuit, J. Trufin and T. Verdebout (2022). Boosting on the responses with Tweedie loss
functions. Paper submitted for publication.

See Also

BT, .BT_relative_influence, BT_perf.

summary.BTFit Summary of a BTFit object.

Description

Computes the relative influence of each variable in the BTFit object.

Usage

## S3 method for class 'BTFit'
summary(
object,
cBars = length(object$var.names),
n.iter = object$BTParams$n.iter,
plot_it = TRUE,
order_it = TRUE,

https://github.com/gbm-developers/gbm3/
https://github.com/gbm-developers/gbm3/


20 summary.BTFit

method = .BT_relative_influence,
normalize = TRUE,
...

)

Arguments

object a BTFit object.

cBars the number of bars to plot. If order=TRUE only the variables with the cBars
largest relative influence will appear in the barplot. If order=FALSE then the
first cBars variables will appear in the barplot.

n.iter the number of trees used to compute the relative influence. Only the first n.iter
trees will be used.

plot_it an indicator as to whether the plot is generated.

order_it an indicator as to whether the plotted and/or returned relative influences are
sorted.

method the function used to compute the relative influence. Currently, only .BT_relative_influence
is available (default value as well).

normalize if TRUE returns the normalized relative influence.

... additional argument passed to the plot function.

Details

Please note that the relative influence for variables having an original negative relative influence is
forced to 0.

Value

Returns a data frame where the first component is the variable name and the second one is the
computed relative influence, normalized to sum up to 100. Depending on the plot_it value, the
relative influence plot will be performed.

Author(s)

Gireg Willame <gireg.willame@gmail.com>

This package is inspired by the gbm3 package. For more details, see https://github.com/gbm-developers/
gbm3/.

References

M. Denuit, D. Hainaut and J. Trufin (2019). Effective Statistical Learning Methods for Actuaries
|: GLMs and Extensions, Springer Actuarial.

M. Denuit, D. Hainaut and J. Trufin (2019). Effective Statistical Learning Methods for Actuaries
||: Tree-Based Methods and Extensions, Springer Actuarial.

M. Denuit, D. Hainaut and J. Trufin (2019). Effective Statistical Learning Methods for Actuaries
|||: Neural Networks and Extensions, Springer Actuarial.

https://github.com/gbm-developers/gbm3/
https://github.com/gbm-developers/gbm3/


summary.BTFit 21

M. Denuit, D. Hainaut and J. Trufin (2022). Response versus gradient boosting trees, GLMs
and neural networks under Tweedie loss and log-link. Accepted for publication in Scandinavian
Actuarial Journal.

M. Denuit, J. Huyghe and J. Trufin (2022). Boosting cost-complexity pruned trees on Tweedie
responses: The ABT machine for insurance ratemaking. Paper submitted for publication.

M. Denuit, J. Trufin and T. Verdebout (2022). Boosting on the responses with Tweedie loss
functions. Paper submitted for publication.

See Also

BT, .BT_relative_influence.



Index

∗ datasets
BT_Simulated_Data, 16

∗ methods
BTCVFit, 6
BTFit, 7

.BT_cv_errors, 5, 12

.BT_relative_influence, 19–21

BT, 2, 7, 9, 13–16, 18, 19, 21
BT_call, 2, 5, 9, 13, 16
BT_callBoosting (BT_call), 9
BT_callInit (BT_call), 9
BT_devTweedie, 12
BT_more, 13
BT_perf, 5, 12, 15, 19
BT_Simulated_Data, 16
BTCVFit, 5, 6, 12
BTFit, 4–6, 7, 11–15, 17, 18, 20

predict.BTCVFit, 8
predict.BTFit, 5, 12, 17
print.BTFit, 5, 12, 18

rpart, 2
rpart.control, 4, 10

summary.BTFit, 5, 12, 19

22


	BT
	BTCVFit
	BTFit
	BT_call
	BT_devTweedie
	BT_more
	BT_perf
	BT_Simulated_Data
	predict.BTFit
	print.BTFit
	summary.BTFit
	Index

